Project: Magnetic-Atom Quantum Simulator
Acronym | MAQS |
Project Topic | We propose to realize a novel quantum simulator made of magnetic atoms in periodic potentials, which will enable the investigation of quantum-many body problems associated with long-range dipole-dipole interactions. Our proposal is based on a series of key new developments. We will develop new tools to increase the strength of dipole-dipole interactions (shorter-period UV lattices, magneto-association of magnetic atoms into molecules with a stronger magnetic moment), and to control and measure their interaction at the nano-scale (using super-resolution techniques and narrow spectroscopic lines). We will develop new probes to certify the presence of quantum correlations, which are expected to be particularly strong in these many-body long-range interacting systems. We will either probe correlations in real space (microscope, double-well lattices), in momentum space (Doppler spectroscopy), or in the spin sector. These probes will be developed in a joint theory-experiment endeavor, to find the best ways to define and quantify entanglement. The breakthrough realization of quantum simulators based on lattice-trapped magnetic atoms will allow us to explore for the first time two families of problems. First, we will probe low energy quantum phases stabilized by dipolar interactions; and second, out-of-equilibrium dynamics and quantum thermalization dominated by long-range interactions. A number of exotic phases will be within experimental reach, such as the checkerboard or stripe phases, or peculiar phases of spin systems with long-range interactions. We will aim at protocols to certify the nature of the quantum correlations within these systems. Such correlations can be explored in four different complementary setups: 1) an Er lattice gas within a Dy bath (Innsbruck); strongly dipolar lattice gases made of either 2) Dy atoms in UV lattices (Stuttgart) or 3) Dy2 molecules in standard lattices (Pisa/Florence), and 4) Cr atoms realizing lattice spin models (Paris). This project fits the Quantum Simulation part of the call. Magnetic atoms are the only currently available long-range interacting system which is collisionally stable and which possesses a scalable (>>100) number of particles. However, up to now dipolar interactions remain too weak for a number of applications. We propose technical improvements which will drive these systems into the relevant regime where novel quantum phases and out-of-equilibrium phenomena are expected to emerge. If our goals are fulfilled, lattice gases made of magnetic atoms will become a new competitive platform for quantum simulation, having access to a number of fundamental phenomena, many of them unexplored so far (magnetism of localized or itinerant long-range interacting spin; charge ordering in extended Hubbard models; localization of disordered long-range interacting systems). Our consortium aims at developing new tools to diagnose the non-classical nature of the quantum many-body states produced in the experiment (entanglement, Bell correlations). If successful, our project will have a lasting impact on the field of quantum simulation in general, in connection with central topics in quantum condensed matter and quantum information science. |
Network | QuantERA |
Call | QuantERA Call 2019 |
Project partner
Number | Name | Role | Country |
---|---|---|---|
1 | Laboratoire de physique des lasers | Coordinator | France |
2 | LABORATOIRE DE PHYSIQUE DE L'ENS DE LYON | Partner | France |
3 | University of Stuttgart 5. Physikalisches Institut | Partner | Germany |
4 | Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences | Partner | Austria |
5 | ICFO- The Institute of Photonic Sciences | Partner | Spain |
6 | CNR - Istituto Nazionale di Ottica | Partner | Italy |
7 | Institute of Physics Polish Academy of Sciences | Partner | Poland |